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PREPACE

This report presents the essential results of our experimentation

in implementing a new convolutional decoding algorithm on an inexpen-

sive Zilog Z.80 microcomputer systi The work reported was performed

in FY 79 as part of th4MITRE opr ject 7010: ILow Cost Electronics.

The multiple stack algorithm (MSA) was designed by Chevillat and

Costello and first reported in 1977 [1], Their work is the basis

from which we began our studies. The experiment gave us the oppor-

tunity to carefully examine and evaluate the performance of the Z.80

in a complicated simulation. The Implications of the microcomputerts

performance apply directly to a major, on-going consideration of the

Low Cost Electronics project- the effective utilization of inexpen-

sive LSI microprocessors in signal processing tasks.

The report will deal with a specialized topic and certain terms

used frequently throughout the text may not be familiar to the non-

specialist. Interested readers are referred to the reference works

of Wozencraft and Jacobs [19], Gallager [20], Peterson and Weldon

[21], and Viterbi and Omura £22]. to supplement our explanations where

necessary.
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SECTION I

INTRODUCTION

1.1 Purpose

A continuing concern of the Low Cost Electronics project is the

effective use of commercially available large scale integrated micro-

processors and associated memory in suitable signal processing tasks.

Because of our interest in the practical application of error correc-

tion coding, and the software-intensive aspects of sequential decoding

of convolutional codes, we selected a sequential decoding algorithm as

an application example. Among the various decoding algorithms available,

we have focused our attention on a recently developed sequential de-

coding algorithmthe Multiple Stack Algorithm (MSA) [l],because of

its expected performance and since its decoding operations seemed

quite suitable for microprocessor implementation.

This report examines in some detail the MSA and its implementation

on a low-cost, general-purpose small computer, typified by the Zilog

Z-80 microprocessor.

The MSA is an improved form of sequential decoding which reduces

erasure probabilities and obtains potentially low undetected error

probabilities with a modest decoding effort. MSA decoding complexity

tends to be independent of the code constraint length which means that,

when sufficient memory is available, high performance codes with larger

encoder constraint lengths can be used. MSA, which achieves nearly as

equal an error rate as maximum-likelihood decoding at faster through--

put for similar levels of decoder complexity, may be one of the most

effective alternatives to the popular Viterbi decoding algorithm for

convolutional codes.

1.2 Background

The IUw-Cbst Electronics work in digital error control recognizes

that error-correction coding, used in conjunction with spread-spectrum



modulation, provides an added dimension to the design of jam-resistant

communications systems. Our work addresses the perplexing dilemma

of error-correction coding performance (or coding gain) versus cost

and complexity of implementation. Our work concerns the effective

use and implementation of both convolutional and linear algebraic

block codes. This report addresses our work in convolutional decoding.

Convolutional codes are frequently described as tree codes

because the set of possible code words can often be pictured as a

tree-like structure, each code word being represented by a distinct

branch emanating from the root node. Probabilistic decoding algorithms

have been devised that attempt to select a branch in the tree

minimally distant from the received sequence of code symbols that

has been corrupted by noise. These algorithms separate into two

classes: maximum likelihood decoding which makes an optimal decision

at each branch point in an estimated code tree, and sequential

decoding which attempts to select an optimum path through the tree by

successive iteration that frequently requires back-search.

The maximum likelihood algorithms, represented most typically

by the well-known Viterbi algorithm, require all the nodes in the

tree to be examined. Consequently, they are limited to relatively

short codes by the available processor storage capacity (and access

time), this storage requirement expanding exponentially with code

constraint length.

The sequential algorithms search the code tree structure for

correct codewords on a trial-and-error basis. Incorrect paths are

identified and rejected.

Both sequential and Viterbi decoding offer practical choices to

a comuunication engineer designing a high performance, efficient,

2



communication system, but the usefulness of both methods has been

limited by the decoding complexity and speed. For Viterbi decoding,

both the computational complexity and decoding effort are proportional

to eV (where v is the constraint length of the encoder); therefore,

it is practically limited to short codes, usually v S 8. For

sequential decoding, both the complexity and decoding effort are

nearly independent of v, but the number of computations that the

decoder must perform to decode the received sequence is a random

variable of Pareto distribution [2] which makes the decoding in-

complete in finite time. There is always a small probability that

certain error patterns will never be decoded or that erasures* will

ocour when the decoding attempt is terminated.

Under Low Cost Electronics we are experimenting with a recently

developed algorithm known as a maltiple stack algorithm that combines

elements of both maximum likelihood and sequential decoding. Basically,

this algorithm progresses rapidly through the code tree to make a

coarse sequential decoding estimate and then examines the vicinity

of each questionable branch point to refine the estimate. The problem

of stack overflow is reduced by organizing the memory in multiple

stacks, appropriately ordered by a likelihood function metric, in

which tentative decisions are made and then stored. With the proper

choice of codes, the multiple stack algorithm should provide a

superior alternative to either the maximum likelihood or strictly

sequential decoding methods used alone. The new algorithm has been

implemented in our laboratory with an 8-bit microprocessor in a

facility permitting design tradeoffs and direct comparisons to be

performed easily.

*Erasure - Failure of the decoder to reach a decision.

3



1.3 Scope

To implement the SA on a microcomputer and test its speed and

error performance in a noisy environment, the following assumptions,

based on practical considerations, have been made:

(a) The information can be processed irdependently in

blocks if the block lengths (k) are at least 4 or

5 times the constraint length (v).

(b) Erasure probability should be less than 10-5 .

(c) The undetected bit error rate should be less than 
10- 4

for signal-to-noise ratios above 5.5 dB (i.e., binary

symmetric channel error rates less than 3 x 10-2 ).

This report also considers the practicality of real-time MSA

decoding using the Zilog Z-80 computer. There is reason to believe

that if a high-speed microprocessor such as the Z-80 or one of its

successors is used and if an adequate buffer is available, actual

on-line sequential decoding can be achieved at acceptable data and

low error rates.

Since quantitative results are difficult to obtain analytically

for convolutional decoding, simulations were performed. The results

presented in this report are based entirely upon these simulations.

Although a binary, additive white Gaussian noise channel was used

in the simulations, many of the results are applicable to other

random noise channels,

The following section describes the NSA and the software

implementation of the MSA on the Zilog Z-80 microcomputer system

organized for this purpose on Project 7010. Section III discusses

4



the selection and construction of fast-decodable codes which achieve

both a low error probability and a minimal erasure probability.

Section IV describes the parameter selection, and Section V states

some important properties of the MSA. The performance of the HSA

and comparison with the performance of other convolutional decoding

algorithms, especially that of the Viterbi algorithm, are analyzed

and discussed in Section VI. The final section presents conclusions

and suggestions for further improvements and applications.

5
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SECTION II

MULTIPLE STACK ALGORITHM

2.1 Brief Review of Convolutional Codes

Reliability, simplicity of implementation and nearly optimal

performance make convolutional decoding by means of the NSA an

appealing application example for effective use of standard micro-

processors as signal processors. Figure 1 shows a very simple

convolutional encoder. It consists of a 3-stage shift register with

information bits shifted in sequentially, two modulo-2 adders

(exclusive OR's) and a multiplexer for the two resulting bit streams.

In the terminology of convolutional codes, the encoding constraint

length, v, is equal to the number of shift register stages and the

code rate is the number of bits k0 shifted into the register divided

by the number of multiplexed output bitsn 0 sent on the channel. In

the example, v - 3 and the code rate (R c ) - 1/2.

As previously noted, a convolutional code is conveniently

illustrated by a tree diagram (Figure 2). The points of divergence

are called nodes, the horizontal transitions are called branches.

If the first input bit is a zero, the code symbols are those shown

on the first upper branch, while if it is a one, the output code

symbols are those shown on the first lower branch. Similarly, if

the second input bit is a zero, we trace the diagram upward. In

this manner, all sixteen possible outputs for the first four

inputs may be traced.

Convolutionally encoded messages are considered reliable because

a given number of encoded symbols (n0v) affects each information bit

It is conventional [4] to regard the blocks in Figure 1 as shift
registers and the intervals before and between as stages.

7
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permitting the possibility of correcting noisy data. For each

information bit incorrectly transmitted, there will be n 0v symbols

to check and correct it.

These tree codes can be practically decoded by maximum likelihood

decoding algorithms only when the constraint length is short. The

Viterbi algorithm, for instance, combines nodes representing equivalent

states to form a trellis diagram representation of the code tree,

and systematically searches the trellis for maximum likelihood

estimates of transmitted sequences. Only the most likely branch into

each node at a given trellis depth is retained. But when the con-

straint length of the code becomes very large, the number of paths

in the trellis becomes so great that this kind of decoding method is

impractical.

The independent nodes create paths, the number of which increases

exponentially with distance as we progress deeper into the trellis.

But, since many different paths stem from the early nodes in the tree,

a measurement possibility presents itself. If we could use a means

of measuring the quality of the paths to the successive nodes, we

might then be able to effectively disregard paths judged to be

sufficiently bad.

Such a quality measure does exist in the form of the Fano metric,

which is stated below:

Hf (r) - log2  -rE)] (1)

PIZ (1,rw)]

where-Y (1, tW) and X'l, W) are the first rW digits respectively

of the received sequence t and the transmitted sequence X. N represents

9



the number of code bits per source bit (i.e.; I/Rc ) and r indexes the

depth in the tree. B is a bias term which has been shown by J. L. Massey

to be optimal (in the sense of minimizing decoded error probability)

when it is nearly equal to the code rate (Rc ) [3].

On the average, the Fano metric increases monotonically on the

correct path and declines in pursuit of an incorrect path. The

metric values are calculated by using prior knowledge (or assumption)

of the channel error probability and the Hamming distance between

the transmitted and received sequences. As the decoding algorithm

progresses through the tree, the metric value must be stored in

association with the corresponding paths.

2.2 The Single Stack Algorithm - A Sequential Decoding Method

Sequential decoding is a generic term for a tree code probabilistic

decoding procedure that operates by making tentative hypotheses on

successive branches to establish a path through the tree and by

changing the path hypothesis when subsequent choices indicate that

earlier choices were incorrect. The Fano algorithm represents one

of the early methods of sequential decoding developed for a class of

random tree codes [4]. This algorithm progresses either backward

or forward through the code tree one node at a time according to the

path metric value relative to a preset threshold.

Although the correct path is ultimately found, the search for

that path is restricted to a route through connected nodes separated

by a single branch, whether the decoder is advancing or retreating in

the code tree. The Fano algorithm method tends to maintain decoder

hardware complexity and storage requirements (excluding buffer storage)

to the approximate level of the encoder. This is achieved, however,

at the expense of many sequential computations during periods of high

channel noise.

10



The single stack algorithm (SSA), developed by Zigangirov and

later by Jelinek [5], is an improved sequential decoding method.

The SSA reduces the complexity of path search by providing for storage

and metric reordering of all previously processed path data. This

allows the decoder to return to one of a number of previously

explored nodes according to the relative path metric values

appropriately ordered and stored in a memory stack. This improvement

is achieved at the expense of increased memory requirements and the

need to reorder at each node extension the path metrics stored.

The SSA avoids repeating earlier computations.

The principal strengths of the single stack algorithm are:

(1) Bit error rates which decrease exponentially

with code constraint length at information rates

below channel capacity,

(2) A computation load that remains bounded, independent

of constraint length, provided the code rate is

less than a computational bound (R comp),

(3) Storage requirements which grow only linearly

with code constraint length.

The SSA also has weaknesses which could make its results unacceptable

in high noise situations. One such limitation is the variability

in computation time to advance one node in the tree. To keep up

during noisy periods or to catch up quickly when the channel has

again become quiet, the decoder is forced by this variability to

include sufficient buffer storage and to possess a speed advantage

relative to the channel data rate. It must also have sufficient

storage capability in the memory stack.

11
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We know that sequential decoding can be described quantitatively

by a computational effort C. We interpret C to be the number of

operations or computations required to advance a unit distance in the

code tree. C is a random variable having a Pareto distribution*.

In other words, the probability P(C>N) that C exceeds some large

value N is proportional to N
- 0

P(C>N) - a N_-  (2)

where the Pareto exponent * is independent of constraint length,

depending only on channel properties and code rate (a is a constant of

proportionality) [2].

Since most received sequences at useful channel signal-to-noise

ratios are decoded with very little effort, average computation should

be lower than the fixed computational effort of maximum likelihood

decoding. But there is always some fraction of received sequences

proportional to N -* which imposes an impractically large computational

load and results in incomplete decoding, which we interpret here as

producing erasures.

Normally a computational limit (Clim) is established beyond

which the decoder fails, erasing a stream of data. The probability

of such an erasure is governed by the Pareto distribution:

PE P(C>Ci) -aC(3)~ERASURE lim i

*Regardless of the algorithm used, sequential decoding involves a
random motion in the tree, and hence C is a random variable.

12



which decreases algebraically as a function of Clim*

These erasures are generally caused by an overflow of the

available memory in the input buffer which stores continuously

arriving channel data, or by overflow of the finite memory stack

which stores and reorders the processed data. The latter occurrence

is more prevalent. Figure 3 presents a flow chart of the SSA.

The basic steps that comprise the SSA codes are:

INITIALIZE (1) Initialize by clearing the memory table

and creating one entry corresponding to

the start of the decoding tree.

ORDER (2) Retrieve the entry with the largest

metric.

EXTEND (3) Compute the branch metrics stemming
NODES from the node found in step (2) and

create new entries in place of the

original. Store these new entries in

the table.

CHECK (4) If the computational limit is exceeded,
TERMINAL, the procedure halts and causes erasures.CHECK Clim ,

OUTPUT If the Clim is not exceeded, repeat

ERASURE steps (1) through (3) until a terminalOR DECISION
node is reached and then read out the

decoded path from the origin to the

terminal node.

When the computational limit is exceeded (or the stack is full in the

SSA sense), this algorithm just makes a random guess and produces

erasures. This event is governed by the Pareto distribution as

previously discussed.

13
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2.3 An Improved Stack Algorithm - The Multiple Stack Algorithm (MSA)

2.3.1 Basic Strategy of the MSA

The multiple stack algorithm (MSA) is a sequential decoding

procedure devised by Chevillat and Costello to overcome the deficiencies

of the single stack algorithm [1]. The MSA strategy differs from

that of the SSA. Where the SSA advanced slowly during noisy periods

exploring many incorrect subsets before extending the correct path,

the MSA progresses quickly through the tree to find a reasonably

good tentative estimate after which the alternatives are explored in

search of the maximum-likelihood path.

The problem of stack overflow is accommodated by providing a

hierarchy of memory stacks. Each stack is used to process a subset

of nodes having the best metric values transferred to them from the

previous stack. As these distributed stacks are filled, the data is

processed in the final stack to arrive at a tentative decision for

that stack. This decision is stored and compared with a new tentative

decision reached by processing in the previous stack, and the pro-

cessing is continued until a decision is reached in the first stack.

The best tentative decision is kept at each iteration, and, when

processing is concluded in the initial stack, the best decision be-

comes the decoded path. Decoding can also be terminated by exceeding

the determined Cim; in this case, the best tentative decision yet

obtained becomes the decoding decision. The MSA produces the error

performance of an SSA with infinite stack size by iterating the de-

coding algorithm in a set of subordinate, finite-size stacks.

Although it is Pareto distributed, the probability distribution

of computational effort can be upper-bound by an exponentially decreasing

15



function of the code's column distance function*. This fact is

useful for the MSA and makes it best suited for decoding codes with

large column distance function.

The MSA retains these desirable properties of sequential decoding:

1. complexity and computational effort are relatively

independent of code constraint length, and

2. average decoding is faster than maximum likelihood

decoding.

Furthermore, the MSA allows complete erasurefree decoding. Such a

complete decoding method, capable of achieving low error probabilities

with substantially lower average decoding effort than the Viterbi

algorithm, would seem to be a desirable compromise between direct

maximum-likelihood and strict sequential decoding.

2.3.2 Flowchart Description of the MSA

The multiple stack decoder consists of a central processor and

a number of finite-size memory stacks. Decoding begins by placing

the origin node of the estimated code tree into the first stack.

The flow chart in Figure 4 shows that the MSA initially operates

exactly like the conventional single stack algorithm. Starting with

the origin node, the top node in the stack is extended. After its

elimination from the stack, the successors are inserted and the

stack is put in order according to the metrics of the nodes. Each

entry consists of, among other things, a node identifier and its

metric. Decoding proceeds by extending the node on the top of the

stack again. The terminal node distance is established by setting a

*Column distance function (CDF) is defined as the minimum Hamming

distance between distinct paths divergent from the first branch as
a function of distance into the code tree.

16
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decoder constraint length. It is normally 4 or 5 times the encoder

constraint length, since all paths merge into the same nodal state with

high probability at this approximate distance [6]. The distance of the

terminal node determines the size of the processed blocks of data. The

MSA processes each block as a unit.

The basic steps that comprise the MSA are:

INITIALIZATION

(1) Initialize by clearing the memory table and creating

one entry corresponding to the start of the decoding

tree.

PATH EXTENSION /ORDERING

(2) Retrieve the entry with the largest metric.

(3) Compute the new branch metrics stemming from the

node found in step (2) and store these entries in

place of the original.

STACK CREATION

(4) If the first stack table is full, transfer the top

T entries into the next secondary stack and continue

to process in subsequent stacks as necessary until a

temporary decision is reached for a complete path

containing k information bits, where k is set by the

user.

BACK SEARCHING (STACK DELETION)

(5) Go back by processing in reverse order in the set of

subordinate stacks to improve the decision by finding

a complete path with a larger metric value to replace

the current one until the computational limit is

reached.

18



TERMINATION

(6) Terminate if () a decision is reached at the first

stack, or

(ii) the computational limit Clim is

reached.

Notice the differences between the NSA and SSA. Instead of quitting

when the first stack has filled and calling the entire block an

erasure, the MSA continues processing in secondary stacks to reach

a decision, backsearches to refine the tentative decision, and then

terminates decoding. Termination occurs either after satisfactorily

achieving maximum likelihood decoding or by reaching a set computa-

tional limit.

If the terminal node is reached before the first stack fills up,

decoding is completed, and the path from the origin to this terminal

node becomes the decoded codeword. In this case, the MSA executes

exactly the same decoding steps as the SSA. If the first stack

fills up before the terminal node has been reached, the top T nodes

of the first stack (the most likely ones) are transferred to a second

stack where decoding proceeds using these T transferred nodes. T is

a decoding parameter to be selected.

If the top node in the second stack reaches the terminal node

before the stack fills up, the codeword corresponding to this terminal

node is stored as a tentative decision in a special register. The

decoder then deletes the remaining nodes in the second stack and

returns to the first stack where decoding continues. Since T nodes

have been removed and transferred at the time of overflow, exactly T

spaces are available in the first stack. If the decoder reaches a

terminal node before the first stack fills up again, the path metrics

of the new terminal node are compared with those of the tentative

decision. The node with the best path metric becomes the decoding

decision.
19
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But, if the first stack fills up again before the terminal node

is reached, a new second stack (the previous entries in the second

stack having been deleted) is formed by again transferring the top

T nodes of the first stack. If this stack also fills up before a

tentative decision can be made, a third stack is formed by transferring

the top T nodes from the second stack. Additional nodes are formed

in a similar manner until a tentative decision is reached. The

decoder always compares a new terminal node's path metric to that

of the node stored in the tentative decision register and retains

the node with the best metric available. The rest of the nodes in

the stack are then deleted and decoding proceeds in the previous stack.

The algorithm terminates decoding when it reaches the end of

the tree in the first stack or when it exceeds the C lim set by the

user. In the former case, the node at the top of the first stack

becomes the final decoding decision (maximum-likelihood decoding).

In the latter case, the best tentative decision yet obtained becomes

the final decoding decision (non-maximum-likelihood decoding).

We would like to take a moment to discuss the possible occurrence

of undetected (or undetectable) errors in the MSA decoder, Undetected

errors will occur if the channel error patterns are such that:

(1) the correct path was not transferred to secondary

stacks, and Clim was reached before returning to the

first stack (e.g., the correct path was available

throughout the decoding process, but, because Clim

was reached, an incorrect path was elicited), or

(2) the correct path was transferred from the first stack,

but the largest metric found for all decoding

decisions at secondary stacks was equal to or greater

than that for the correct path, or

20



(3) the metric value of the correct path was less than

the value of some incorrect path such that the

incorrect path with the larger metric value was

finally preferred by the decoder, and decoding was

completed in the first stack.

The error events of type (3) are simply those that would remain

undetected by an ideal maximum-likelihood decoder. The error

events of types (1) or (2) would be decoded by such a decoder. The

parameters of the MSA should be chosen to minimize the events of

types (1) or (2) at the required throughput.

2.3.3 Software Implementation of the MSA

The MSA was implemented on a Zilog Z-80 microprocessor in our

laboratory. This versatile, third generation machine was utilized

for several reasons including the fast instruction cycle time,

operations -code efficiency, multibyte instruction capability, and

suitability for the stack reordering operation. To satisfy the

anticipated memory requirements of the MSA, a RAM containing 48k

bytes of memory was incorporated into the development system. Rate

I convolutional codes of constraint length 8 and 15 were considered

for implementation of the algorithm, as practical and challenging examples.

The entire simulation can be separated into three parts: the

random error generator, the convolutional encoder and the NSA

decode; as shown in Figure 5.

First, a 16-bit linear feedback shift register pseudo-random

ntber generator is used to provide sequences of nearly random

source bits to be encoded by the (2,1)v convolutional encoder. The

resulting codewords are then fed to a simulated binary symsetric
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channel (BSC) which combines the output of a linear congruential

random number generator with the bits produced by the source generator.

The inputs to the NSA decoder are the corrupted channel digits.

Finally, the decoded message sequences of the MSA are compared

with the suitably delayed version of the actual transmitted message

sequences**. The number of errors undetected by the MSA is finally

recorded and serves as a measure of the performance of the MSA

decoder. Details of these blocks of the MSA simulation are presented

below.

2.3.3.1 The Random Error Generator. The random error

generator, which is used to simulate the effects of additive white

Gaussian noise on a communication channel, consists of a 16-bit

linear feedback shift register (LFSR), pseudo-random number generator

with feedback polynomial 2100138 and a 16-bit linear congruential

pseudo-random number generator which produces a sequence of residues

of a large modulus by means of a linear transformation that uses the

recursive relationship:

Y(i + 1) - (22 + 1) Y(i) + 1 mod 216 (4)

It can be shown that both congruential and shift-register generators

have regularities that make them individually unsuitable for general

Monte Carlo use, but combining the generators in various ways appears

to produce satisfactorily random sequences. The method of combination

A linear congruential generator produces a sequence of residues
of a large modulus m by means of a linear transformation xi+l-axi+b
mod m. 0 < xi < m [23].

Normally, a decoding decision is withheld until the entire received
sequence has been processed.
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we used is known as algorithm M. It combines two sequences U and V

of uniform distribution U1 , U2, U3. . . . .. . V1, V2, V3, . . . having

magnitudes between 0 and 216 - 1, produced by congruential and shift-

register generators. Suppose memory locations C(1), C(2) ....

C(100) are filled with U. One generates a new V, uses its last

seven digits to form an index J from 0 to 127 and uses C(J) with a

newly generated U.

Sequences obtained by applying Algorithm M successfully passed

the tests usually applied to uniform random number generators, and

also passed the chi-square test of frequency distribution.

2.3.3.2 The Convolutional Encoder. Encode is our algorithm

used to generate the digits associated with the tree branches at a

rate required by the decoder. There are at least two approaches

to convolutional encoding which differ in storage requirements.

A. Table - Lookup

For a simple (2,1)8 code, encoding can be achieved by table

lookup methods which eliminate complicated repetitive computations.

Simple simulations of the encoder operation can be accomplished by

forming a table with 256 possible connections of 8-stage shift

registers. The tables permanently store the information.

The basic tradeoff in the table-lookup method is time vs.

memory. The required size of the codeword table, which increases

exponentially with the constraint length of the code, obviously

sets a limit to the type of encoder simulation. A table-lookup

method is practical only for short constraint length codes, and these

have limited error correction capability.
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B. Software Emulation

For longer codes, such as (2,1)15 codes, it is better to

emulate the actual encoder with a series of bit shifts, AND, and

EXCLUSIVE-OR operations according to the given generator polynomials,

generating codewords as required. These are extremely simple

operations for the arithmetic logic unit of the Z-80's CPU and can be

programmed efficiently. This method is also flexible because codes

with different generator polynomials can be implemented on the

microcomputer by a simple software change in the encoder tap

connections.

2.3.3.3 The Multiple Stack Decoder. The multiple stack decoder

block is the main program of the microprocessor simulation. The

inputs from the NSA are sequences of corrupted received channel

symbols. The decoder includes, among other things, a replica of the

convolutional encoder. This encoder constructs a decoding tree with

which the received channel symbols are compared to obtain the best

estimate. The outputs of the NSA are the decoded message bits. The

probability of an undetected error decreases exponentially with the

size of the replicated encoder built into the decoder. In short,

the NSA decoder utilizes the information of both the received symbols

and the code tree replica to recover the actual transmitted bits.

2.4 Some General Merits of the NSA

2.4.1 Completeness

For those few received sequences which require excessive

searching because of high noise, the NSA maintains a good non-maximum

likelihood estimate of the correct codewords. It does not suffer

from the deficiencies related to Pareto distribution of computational
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effort which can cause incomplete decoding in the SSA in high noise

environments. The NSA establishes several secondary stacks to

process the decoding and to reach some tentative decision before

exceeding the computational limit. Therefore, all codewords are

decoded to some estimate within the computational limit. The

completeness of NSA decoding is sometimes termed erasure free decoding.

2.4.2 Optimality

The NSA is a sequential decoding method which achieves

asymptotically optimum error performance. Because the complexity of

sequential decoders is relatively independent of constraint length v,

the constraint length can be made quite large (24 ! v ! 48) with a

very small probability of undetected error. In the Z-80 implementa-

tion, the constraint length is restricted to a smaller number because

of limitation on memory and processor speed. For rates above R comp*

the error performance of the sequential decoding algorithm has been shown

elewhere to be superior to that of certain block codes of the same length

[7]. The NSA also bears certain similarities to that of the Viterbi

algorithm particularly the ability to do some limited multiple-path

extension.

2.4.3 Decoding Efficiency

The decoding effort in the NSA is characterized by a random

variable. It allows some adaptability to the channel noise environ-

ment and is faster on the average than the constant decoding rate

of Viterbi decoding which has a fixed computational effort regardless

of the channel environment. The NSA operating in real-time need

never be idle (5]. If the most recent received signals correspond

*The computational cutoff rate of sequential decoding above which the
average number of computations per information bit tends to infinity
for large block size.
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to depth d in the decoding tree, and if the current node is at

depth d, then, while waiting for more received signals, the decoder

can extend the stack entry which has the largest metric and which

is at a depth less than d. This advance work costs nothing, and

since it may be required at a later time, it permits efficient

operation at high data rates.

Such a complete decoding algorithm capable of achieving low

error probabilities with a lower average decoding effort at higher

throughput may be a desirable alternative to the popular Viterbi

maximum-likelihood decoder in various applications. Although not

explored here, it also lends itself to soft decision decoding.

It could provide an effective inner code in a concatenated coding

scheme [8].

2.5 Codes Used in the NSA

It has been shown that codes with certain distance properties

will provide both low error probabilities and fast decoding for the

MSA [9]. These properties are closely related to the column

distance functions of the codes. Guided by this function, searches

for good codes suitable for the NSA were performed and will be

reported in the next Section.
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SECTION III

CODE SELECTION FOR THE MSA

3.1 Systematic Versus Nonsystematic Codes

An (no, k ) convolutional code is called systematic if a fixed

set k of the output symbols is equal to the current k input symbols.

Otherwise, the code is nonsystematic.

In the absence of errors, the use of systematic codes provides

immediately apparent information sequences from the encoded sequences.

For many engineering purposes, such as synchronization and monitoring,

it is desirable to get reasonably good estimates of the information

digits directly from the received sequences without first employing

the decoding process. In nonsystematic codes, however, the informa-

tion symbols are diffused by linear combination, and this convenience

is unavailable.

Wozencraft and Reiffen have shown that for any nonsystematic

code there is a systematic code with the same minimum distance [10].

Their results showed no advantages in using nonsystematic codes with

threshold decoding, but their research may have overlooked advantages

of using nonsystematic codes with other types of decoders not then

available.

Recent results have demonstrated reduced undetected decoding

probability by use of nonsystematic codes with either sequential

or maximum likelihood decoders [11]. It has been concluded further

that the nonsystematic codes have simpler encoder realizations (shorter

encoding constraint length) than the equivalent systematic codes.

For these reasons, nonsystematic codes were chosen over systematic

codes for our MSA sequential decoder implementation.
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3.2 Best Codes for the MSA

3.2.1 The Free Distance Consideration of the MSA

For many applications, the code rate R = is chosen as aC

compromise between bandwidth expansion and correction capability.

The resultant doubling of bandwidth attains within 1 dB the total

gain possible by this type of coding, but does not catastrophically

degrade the energy per transmitted source bit. A new coding gain

remains. Coding gain analyses previously performed on this subject

have also shown -rate codes to be optimally efficient on additive

Gaussian noise channels [12].

For our study, the rate Bahl-Jelinek (B-J) nonsystematic codes

with complementary generator were chosen to obtain the largest free

distance [13]. The free distance of a linear convolutional code is

the minimum distance between pairs of infinite length code sequences;

it is also equal to the minimum Hamming weight of the sequence.

Of all convolutional codes known so far, B-J codes are the only ones

that achieve maximum free distance:

dfree +2forv 16 (5)fre o +  oo

where o is the encoding constraint length of the B-J codes.

3.2.2 The Column Distance Function Consideration for the MSA

To choose the best available codes for the MSA, the relationship

between the column distance function and the computation effort of

the HSA has been studied. The column distance function (d (r)) isc
the minimum distance between code sequences that diverge from the

first branch as a function of depth r in the tree. The column

distance function is bounded at the constraint length distance by the
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minimum distance (the distance between sequences at a depth equal

to the constraint length) and by the free distance

d c (v) < d c (r) < d c (r - ); r ! v (6)

Chevillat and Costello have shown that the computational effort

required for sequential decoding of a convolutional code is upper

bounded by an exponentially decreasing function of the code's column

distance function [ 9]. Codes with rapidly increasing column distance

function are best suited for the MSA.

3.2.3 Code Selection Procedure

Table I and Table II shown below have been generated by Chevillat

to enable the selection of good codes for the MSA [14]. We have used

these tables for our code selection as will be described. Table I

displays an "influence limit" parameter d as a function of the
max

crossover probability for a binary-symmetric channel. This parameter
(d max ) is defined as the value of the code's column distance function

beyond which it has little or no influence on the Pareto distribution

of computational effort, P(C>N). For a given expected channel cross-

over probability (or equivalent signal-to-noise ratio) we would like

to choose a code whose CDF reaches at least d in order to control
max

P(C>Clim).

In addition, we also should choose a code having large free

distance, d free' in order to minimize the residual error probability

P E To do this we attempt to reach the condition of equation (5)

for the Bahl-Jelinek nonsystematic codes.

For the MSA we also need to select codes with rapidly increasing

column distance function to control the computational load. Chevillat
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has presented (in Table II below) the generator polynomials for codes

having optimum average column distance growth as a function of dmax

and the code's free distance, dfree'

For a (2,1)8 code we choose d free + 2 = 10. For a typical

channel crossover probability, p = .03, we see from Table I that

d = 10 also; that value is also adequate for p < .03. We selectmax
from Table II a code, with generator polynomial (1344)8, that meets

the distance requirements.

Similarly, we can choose a code having longer constraint length

for use on noisier channels. For a channel crossover probability

of p = .048, we find in Table I that d = 15. For a constraintmax

length v = 15 code we can obtain dfree = v + 2 = 17. From Table II

we find that a (2,1)15 code having generator polynomial (141512)8

has rapid column distance growth and satisfies the distance

requirements.

We can construct both the (2,1)8 and (2,1)15 encoders using the

generator polynomials selected above. As stated earlier, these codes

are Bahl-Jelinek (B-J) nonsystematic codes with complementary

generators. The selected generator polynomial is therefore

complemented to yield another polynomial in such a way that their first

and last coefficients are "one" and the middle coefficients are

complementary. The resulting two polynomials are then used as the

tap connections of the two shift registers which generate the code

by generating two output bits for each input source bit. For a

(2,1)8 code, the chosen generator polynomial is (1344)8. The

complementary generator polynomial is then (1434)8. The (2,1)8

B-J encoder is constructed as shown in Figure 6. Similarly, the

generator chosen for the (2,1)15 B-J code is (141512)8. The
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TABLE I

Influence Limit of CDF on P(C>N)

BSC-p d

0.001 4

0.004 5

0.008 6

0.013 7

0.019 8

0.025 9

0.030 10

0.034 11

0.038 12

0.042 13

0.045 14

0.048 15
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complementary generator becomes (136266)8. The (2,1)15 encoder is

shown in Figure 7. These encoders are used to generate our (2,1)8

and (2,1)15 code sequences for the MSA simulations.
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SECTION IV

PARAMETER SELECTION FOR THE MSA IMPLEMENTED ON

A Z-80 MICROCOMPUTER SYSTEM

Parameter selection for MSA use with the Z-80 is an important

consideration in the attainment of low error rates and high throughput.

Unlike most convolutional decoding algorithms, the MSA allows the user

freedom to choose a strong constraint on the amount of memory used by

adjusting the decoding parameters within a tolerable range of

performance. Another user might consider the memory cost to be low

enough to be willing to use as much memory as necessary to achieve

high performance and throughput. This section points out various

options available to the user in parameter selection and also considers

those parameters that dominate MSA performance. It also discusses the

impact of the Z-80 microprocessor implementation on parameter selection

in terms of cost and effectiveness. Finally, an efficient way of

choosing the parameter set is suggested.

To evaluate MSA performance in terms of its residual error

probability (PE) we must study PE as a function of the MSA and channel

parameters. In general, PE increases as the channel signal-to-noise

ratio (SNR) decreases. For MSA operation, the designer should adjust

the decoder performance to accommodate variations in channel SNR by

choosing the available number of stacks in order to keep P(C>Clim)

sufficiently small and by selecting the code constraint length (within

computational limits) to minimize the residual error probability.

While larger constraint length (v) would ultimately improve error

performance (exponentially) with only algebraic increase in complexity

of the MSA decoder, only (2,1)8 and (2,1)15 codes were implemented and

tested on our microcomputer development system because of storage

limits.
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To study the influences on performance of the chan(,l crossover

probability, memory stack size, selected computational limit, number

of examined tree branches, and number of transferred nodes, extensive

decoding trials were run during the Z-80 simulation. We expected

the performance of the MSA to be sensitive to the restrictions imposed

by a microcomputer system. Had we implemented the MSA on a fast

minicomputer [14J, we would have selected certain parameters to

optimize the error performance and achieve erasurefree decoding with

little regard for storage and computational effort. But for Z-80

implementation, the performance was restricted by available memory.

The freedom to select parameters was similarly restricted.

We have available the following parameters in the MSA implementation:

p: The crossover (transition) probability of the

binary symmetric channel (determined for a white

gaussian additive channel),

Z I: The size of the first stack,

k: The number of branches through the tree from the

root to terminal node (without tailing), it is also

called the decoding constraint length,

Zt: The size of the secondary stacks i 2 ... h -2,,

T: The number of nodes transferred from the previous

stack upon stack overflow (the number of transferred

nodes is the same for each transfer),

Clim* The computational limit beyond which the algorithm

must terminate.

These six parameters and their effect on PE will now be individually

examined.
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4.1 The Effect of Channel Crossover Probability p upon P

The transition diagram for the binary symmetric channel is shown

in Figure 8. Consider the binary symmetric channel model with con-

volutional coding and MSA decoding shown in Figure 9. The encoded

random sequence is corrupted by the additive white gaussian noise.

Antipodal signalling and symmetric two-level received quantization

are assumed. The effects of the transmitter, modulator, the gaussian

channel noise and the receiver quantizer are all described by the BSC

transition probability, which for the model of Figure 9 is

p -Q ( 2E.R: (7)

where Q(') is a normal distribution probability function in which

Eb/N is the energy-to-noise ratio per source bit and R = ko/n is

the code rate in bits per transmitted symbol. For all the codes we

use here R = . The probability function
c

1 e~ d2 /  (8)
Q (a) -= : -O/2da(8

is a well-tabulated function; the corresponding values of (Eb/No)dB

for different values of p are shown in Table III.

For time invariant channels with additive white gaussian noise,

the error performance without coding is upper-bounded by an exponentially

decreasing function of signal-to-noise ratio (15]. With convolutional
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TABLE III

The Corresponding Eb/N ° for Selected Cross-

over Probabilities, p.

BSC( )d

0.0449 4.609

0.0410 4.812

0.0371 5.032

0.0332 5.272

0.0293 5.529

0.0254 5.823

0.0215 6.129

0.0195 6.298

0.0176 6.465

0.0156 6.669
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encoding and multiple stack decoding, the plot of decoded error rate

PE as a function of b/No is expected to decline much more steeply

than the channel bit error rate curve of the BSC, provided E b/N is

sufficiently high.

But as the channel noise increases and E b/N decreases, the

error rate obtained by use of the MSA increases to a limit at which

the deteriorating signal-to-noise ratio makes further coding undesirable

as it would actually produce a loss rather than gain. For our simula-

tions, the selected value of p is set by randomly toggling a fixed

average number of error bits (according to a gaussian distribution)

throughout all codeword bits being processed.

4.2 The Fffect of First Stack Size Z

The first stack size should be large enough to completely process

most of the received sequences so that only those sequences that are

badly corrupted require the use of secondary stacks. The residual

error probability of the MSA is upper-bounded by the decoded error

probability of the single stack algorithm and other factors:

PE(MSA) P PE(SSA) + Pes PI1 (9)

where PE(SSA) is the decoded error probability of an infinite-stack

SSA (without erasures), P1 is the probability of first stack overflow

(causing erasures in the SSA) which is given by the Pareto distribution:

PI P [C > Z - 1] = CSD [Z1  - (10)
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and P is the erasure-estimate error probability (i.e., the probability
es

of incorrectly estimating a bit in the codewords selected when C>C l).

For example, the simple technique that picks at random a codeword

whenever C>CI m has the probability 1 - 2
-k l of choosing the

wrong path; in this case P depends on whiLn path is chosen. Aes

coin-toss estimate of the bits would produce P = .es

The erasure-estimate error probability, P es' is relatively small

for the MSA because the entries with the best metrics are always

included in the transfer of T entries to secondary stacks. Therefore,

the component of PE(MSA) that is proportional to P1 should decrease

with increasing first stack size. If either P tends to zero (bestes

estimate) or P1 tends to zero (infinite first stack size), then

PE(MSA) P PE(SSA)- (11)

which is the limiting case that achieves ideal performance.

Since PE(MSA) is influenced strongly by Z1 (the size of the first

stack), in principle we could have increased this parameter indefinitely

to eliminate the second term in equation (9). Since this is impractical

(it would degenerate to an infinite-stack SSA), we must vary the

remaining parameters to control P and the computational effort to
es

achieve efficiently a desired low error rate.

The first stack size (Z1 ) has a strong influence on the overall

error performance. Z1 was made as large as practical in our simulation

to allow a larger percentage of codewords to be decoded in the first

stack which accomplishes maximum-likelihood (optimum decoding. For

those more noisy bloclos, which overflow the first stack, the parameter
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of computational limit enters into the picture. With a large Z1 ,

there are only a small portion of the codewords (actually proportional

to Z I-) that need secondary stack processing. Cli m is chosen to

terminate multiple-stack processing after some reasonable time.

For cases like these, the MSA is designed to have at least one

decision using multiple-stack processing. However, the performance

can seldom compete with the optimum decoding of the hypothetical SSA

with infinite stack size. Therefore, our first goal was to choose

Z1 as large as possible under practical memory constraints. This

choice allowed the majority of codewords to have maximum-likelihood

estimates. Later, C im will be chosen to yield a reasonable decoding

time limit for remaining patterns needing additional processing.

Theoretically, by making Clim sufficiently large, decoding can be

finished eventually after returning to the first stack.

Simulations we made have shown that by setting Z. = 1024 for

(2,1)8 codes and Z = 2900 for (2,1)15 codes the first stack size is

large enough to obtain low error probability but without occupying an

excessive number of memory locations in the microprocessor system.

4.3 The Effect of Decoding Constraint Length k

The decoding rate Rd is defined as:

R - (12)
d nd

where:

k: the decoding constraint length* or the number of information

bits being decoded without any tail within each frame;

*k is also termed "decoding delay" in the sense that the decoder
does not make any decisions until all k information bits have been
decoded.
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nd: the total codeword bits (including tail bits) decoded

for each frame.

A frame contains a total number of k information bits so that for a

rate code

nd = 2 • (k + v-) (13)

where v - 1 is the number of tail bits added to the sequence. After

substituting equation (13) into equation (12), we obtain

Rd= ; k-lk (14)Rd = "(k + v - 1)

If k is made much larger than the encoding constraint length, the

decoder rate remains at effectively the code rate of . The value of

k does not greatly influence decoder memory or computational require-

ments, but as k is increased a decoding decision is deferred for a

longer time and more bytes are required for each entry. More buffer

storage and computation effort are required for larger blocks of k

information bits. There is a connection between k and computational

limit Clim for fixed available memory. As k becomes larger, Clim

should be set smaller such that memory requirements are kept within

the range of availability. PE was shown to increase as k increased [16].

it has been shown that for a Viterbi decoder, a value of k that 
is 4

or 5 times the encoding constraint length v is sufficient for neg-

ligible degradation from optimum decoder performance [17], For the

Z-80 implementation, we have bounded k < 256, and, in general, we

choose 64 ' k < 128 for most situations,
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4.4 The Effect of Size of Higher-Order Stacks Upon PE

The higher-order stacks act as a supplementary aid for those

received sequences which require searching in excess of the first stack.

The use of large secondary stacks allows the MSA to reach the first

tentative decision with fewer stacks, but the computational effort may

be large. These two effects offset each other. PE is independent

of the choice of Zi which only affects decoding time and computational

effort. Zi is normally much smaller than Z1. For both (2,1)8 and

(2,1) 15 codes, we have chosen Zi = 11 for all i # 1; it was selected

as a compromise between the number of stacks and the computational effort.

With the higher-order stacks substantially smaller than the first stack,

the error rate performance of the MSA approximates that of the SSA

without erasures.

4.5 The Effect of T Upon P_

An increase in the number of nodes transferred from the first

stack requires more stacks to be formed and larger computational effort

to reach the first tentative decision. But it also increases the

probability that the correct node will be transferred to the next

stack. These two effects offset each other. Again, PE is independent

of T, but T influences decoding time and computational complexity.

In order to limit the required number of stacks and the computational

effort, T was selected as T S 4.

4.6 The Effect of Computational Limit

An increase in computational limit allows more chance of decoding

in the first stack rather than algorithm termination by exceeding a

smaller C l m . Any termination of decoding in the first stack implies

an estimate at least as good as that of the infinite-stack SSA (it is
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also a maximum-likelihood estimate). Therefore, PE decreases with
increasing C lim, To ensure that the MSA is erasurefree, the decoder

must have at least one tentative decision before decoding stops

by reaching Clim* For T = 1, a critical value of computational

effort Ccrit is defined, below which a tentative decision cannot be

obtained. Cli m must be larger than Ccrit to guarantee erasurefree

decoding:

Clim > Ccrit (15)

where
k-l

Ccrit 1x:= (Zi - 1) + 2 (v- 1) (16)

and v is the encoding constraint length,

From Equation (16) we conclude that the computational limit

Clim and stack sizes (Z and Zi) are closely interrelated. If for

example ZI = 1024 and Z - 11, Clim must be at least greater than

1657 for the (2,1)8 MSA to ensure erasurefree decoding.

An increase of Clim beyond Ccrit does not improve PE greatly.

Therefore, we chose Clim also to limit memory requirements. For

Z-80 implementation, the saving of storage is a major concern and

Clim should be kept at a value that prevents memory overflow. A

safe value of Clim for the above (2,1)8 MSA case is 1700. For (2,1)15

NSA, we chose Clim = 3600.

For T > 1, we expect that more computations will be required

to achieve erasurefree decoding than for T - 1. Care was taken to

select Clim to be large enough to ensure erasurefree decoding.
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4.7 Summary

In conclusion, Z and k should be made large enough to satisfy

the error probability required -- P < 10-4  Clim should be chosen

to guarantee complete decoding without unduly stressing memory

requirements. Z and T should be bounded to limit the requiredi
memory and the computation effort. A summary of our parameter

selection for the (2,1)8 and (2,1)15 codes is shown in Table IV.
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TABLE IV

Selected Parameter Values for (2,1)8 and (2,1)15 MSA

MSA (2,1)8 MSA (2,1)15 MSAParameters

z 1024 2900

Z 11 11

k 64 64

C im  1700 3600

T 3 3
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SECTION V

SOME PROPERTIES OF THE NSA

Five properties of the NSA decoding are discussed below. Most

of these properties and their proofs are taken from the work of

Chevillat [14]. We include them here, with additional discussion,

for the sake of completeness and to enable the reader to grasp more

fully the salient features of the algorithm.

5.1 Properties and Their Proofs

P'wperty 1: 16 the MSA te.'inate decoding by )Leaching the end o6

the tree in the first stack, it6 6inat deciion i6 at leas6t as good

"u the decilion o6 a singe s6tack algorhitm with an infinitety targe

tack. That 6inat decizion i6 eqwvatent to a maximw-tZketihood

decoding.

Proof: If the MSA completes decoding in the first stack without

forming any additional stacks, it executes the same steps as the

SSA, and the decoding path (denoted here as J) will be the same

as that of the SSA with an infinitely large stack.

If the MSA forms higher-order stacks to reach the first

tentative decision and j is included in the T transferred nodes,

j will be among the tentative decisions reached before returning

to the first stack. The MSA's final decision will be at least

as good as J.

If the NSA forms higher-order stacks to reach a tentative

decision but j is not transferred to the next stack, the MSA

obtains some tentative decision before returning to the first

stack. Again the MSA's final decision will be made in the first

stack and will be at least as good as J.
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In the case enumerated in the proof, the correct path j is always

among the decision elements, and the MSA's final decision must be at

least as good as that of the SSA. Therefore, efforts are made to finish

MSA decoding in the first stack to achieve maximum-likelihood decoding.

It has been shown that the number of computations which the SSA decoder

must perform to decode the received digit is a random variable of

Pareto distribution; i.e.:

P [C >Cl] =c SA CI 1 (17)

where C is the number of computations which the SSA must perform to

decode a block of k information bits and * is a parameter which

depends on the channel properties and the rate of the code. In the

SSA, we call the probability of this single stack overflow the erasure

probability. For the NSA, this is Just the probability that the

number of node extensions C (or equivalently the number of computations)

equals or exceeds the size of the first stack Z., or P [C > (Z1 - 1)].

According to Equation (17), this probability equals CSA (Z1 - i)-' = P1.

The proportionality constant CSA and the parameter * are both

independent of Z . (A detailed derivation of CSA is contained in

Reference [18]). Although P1 can be made very small by making Z1
very large, some fraction of codewords (even though very small) will

always need secondary stacks to complete their decoding process. In

the SSA, stack overflow causes erasures which might be intolerable for

some situations. In the NSA, more stacks are available to obtain

some decision before the computational effort is exceeded, as described

in Property 2.

54



Ptoperty 2: In a noisy envi'nment, teceived sequence,6 which 4equiAe

excessive ea4ching wit cause the SSA to quit when stack oveiftow.

With the MSA, a tentative deci&on is atway& obtained be6ore the

computationat imit is 4eached. Thus, white the SSA suffer from

eA6uAes (which means it woutd have to gues through the tree afteA

the decoder quita ), the MSA continues to decode and obtain6 a non-

maximum tiketihood decion which has a tower e1vAwr probability than

a random g.es.

Proof: Because the MSA has additional stacks available for

processing, a tentative decision will be reached if the

computational limit is set sufficiently high. This temporary

fast searching to get at least some results is a compromise

between sequential searching and parallel processing. If

the SSA produces an erasure, the user may (1) randomly select

a codeword, or (2) make a coin-tossing guess to select the

decoded bits. Since the decoding metric increases monotonically

on the correct path and declines on all incorrect paths, and

since the best metric examined is retained for a tentative

decision, strategy (1) will, on the average, offer a path

with a poorer metric than the tentative decision. In strategy

(2), the path metric for the random guess is no larger than

the smallest tree-path metric, since the decoded bits selected

by the user are statistically independent of the source bits.

Consequently, once a tentative decision is obtained, the estimate

is better than a random guess.

Property 3: For T = 1, the nwmbeA o6 tadzz (a) 6o'rmed be6ote the

teAminat node i teached 6o4 the 6iat tme never exceed6 the numbeA

o6 tree b'anches () without the tait (i.e., P(u>k) - 0 provided

C tim i not exceeded). At most, k Atacks ae formed to %each the
i~At tentative decion.
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Proof: We are trying to predict the maximum number of stacks

required before a tentative decision is reached. For T = 1,

only one node entry is transferred to a new stack at the time

of overflow. The first stack guarantees that the top of

stack 1 at the time of overflow has at least tree path length

one. Similarly, the path at the top of stack i at the time

of its overflow has at least length i. Since the tree does

not branch in the tail and the tree is of path length k, to

this point there will be a maximum of k stacks formed before

the first tentative decision is reached.

This does not mean that we need only k stacks to terminate decoding

in all cases. Although it requires a maximum of k stacks to reach

the first tentative decision, the decoder may need more stacks to

finish searching and comparison to reach the best decision. Property 3

only is true for T = 1; for T > 1, more than k stacks may be needed

to reach the first tentative decision.

Property 4: Fot T = I and a code of uate ! having constraint length v,

the MSA i era.6e6ree i6 Cti m exceed6 a critical lower boundC C~it

given by:

k-Ic' t = (Z i - 1) + 2(v - ) (18)
ial

wheAe Zi, i=l, . . i m i6 the size o6 sttack i and k is the numbeA

o6 ,tee bance w thout the tait.

Proof: From Property 3 we learned that a maximum number of k

stacks is formed before the first tentative decision is reached.

Since Zi-i computations are executed in stack i before overflow
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(where Zi is the number of entries in the i
t h stack, i=l,

2, . ., k-i), a total of

k-i
z, - l (19)

1=1

computations are performed before the kth stack is formed.

In this last stack where the tree branches only once more

before the tail, a maximum of 2(v-I) node extensions are

executed before the end of the tree is reached (there are

(v-i) nodes to be branched into 2 possible tree paths).

Hence, a maximum of

k-i
Crit (Z i - 1) + 2(0-l) (20)

i=l

computations is necessary to reach the first tentative

decision. As noted in Property 2, the MSA is erasurefree

when at least one tentative decision is obtained before the

decoding stops by reaching Clim* If we set C lim Ccrit ,

the MSA will obtain the first tentative decision before

decoding is terminated.

This property is especially important because (1) it guarantees

that the MSA achieves erasurefree decoding, and (2) it points out

a practical relationship between the computational limit and stack

storage. Consequently, it helps in determining Clim so the MSA

achieves erasurefree decoding at the lowest cost of storage and

computational effort.
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PropeAty 5: The ptobabii.ty P(u>v) that the numbe. o6 6tacks needed to

Aeach the firt tentative decision exceeds some numbeA v decreasa

exponentiatty with v 6o4 6ufficientty laAge value of v. The

probability P(C>C v ) that the numbeA o6 computations C needed to

,Leach the first tentative decciin is grate than some number C

decreaza exponen taUy with Cv i6 Cv L the numbeA of computations

executed before stack v ovetow:

Cv = ZI-I + t (Zi-T) (21)

Proof: First we calculate the number of computations (node

extensions) executed at the moment of overflow. At the

first stack, exactly ZI-l computations are performed before

it overflows. At the moment of overflow, the top T entries

are transferred to the second stack where decoding continues.

Since these T entries occupy the second stack, only Z 2-T

node extensions are permitted within the second stack before

it overflows. Similarly, only Zi-T node extensions can be

performed at the it h stack. The total C executed beforeV
stack v overflows is accumulated as equation (21).

The proof of the exponential nature of P(u>v) is given

by Chevillat in reference [14]. Consequently, the number of
th

computations before overflow of the v stack as given in

equation (21) can be applied to show that the number of

computations is also exponentially distributed, for a first

tentative decision, r- equivalently erasurefree decoding.

Most of the properties of the MSA have been discussed above for

T-1, but they can be generalized for T>l. Although proofs have not

been developed for T>I, we have noticed from simulation that the

selection of I<T<4 has very little effect on the error performance.
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SECTION VI

SIMULATED PERFORMANCE OF THE MSA

In comparison with the Viterbi algorithm, the MSA also achieves

erasurefree convolutional decodingbut with a modest decoding effort,

at the expense of increased memory requirements. But the steadily

decreasing cost and increasing capacity of microcomputer memories

makes this tradeoff appear worthwhile. In contrast, the Viterbi

maximum likelihood algorithm has a computational effort fixed by

the constraint length. This computational effort grows exponentially

as the constraint length is increased. Increased memory cannot be

employed as efficiently by the Viterbi algorithm as by the MSA. In

this section, we present simulation results showing the performance

of the MSA relative to the Viterbi algorithm. Basically, we have

concluded that similar error rates can be maintained at faster through-

put with similar computational complexity by using the MSA.

6.1 Parameter Values

The residual error performance was measured during all trials as

a function of a binary symmetric channel input signal-to-noise ratio

(SNR) in the range of 4.5 to 7 dB. Equivalently, the conditions

shown in Table V apply for a gaussian channel crossover probability

in the range of 0.013 S p ! 0.045.

The parameters (T, Z1, Zi, C l m ) of the MSA were determined in

accordance with the discussion of Section V. The values of Z1 and

Clim were selected primarily to achieve optimum performance with

available memory in the Z-80. In addition, Z1 was chosen to fit the

Z-80 memory and C lim was made compatible with (or larger than) Ccrit
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TABLE V

General Parameter Values for (2,1)8 MSA and (2,1)15 MSA Simulations

(2,1)8 MSA (2,1)15 MSA
Parameters

free distance, dfree 10 17

CODE generator poly- (1344)8nomial, G 148 8

generator poly- (1434) (136266)
nomial, G2  8 8

total number of
information bits > 106 > 106

processed

DATA number of infor-
mation bits per 64 64

frame, k

number of code bits 142 156
per frame, nd

first stack size, Z 1024 2900

computational limit, 1700 3600

MSA C i

secondary stack size, 11 11
Zi

number of nodes, 3 3
transferred, T
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to obtain erasurefree decoding. The discussion below concerns four

parameters which determine the overall performance of the MSA:

(1) residual probability of error, (2) required stack size or storage

and (3) average number of decoding steps or computations, or

equivalently, (4) throughput. We shall see later that (3) and (4)

are interchangeable as measures of decoder speed.

6.2 Error Performance of the MSA

Sequential decoding has the characteristic that when used with

appropriate tree codes to signal over memoryless channels the

probability of error decreases exponentially toward zero at all

transmission rates less than channel capacity. For the MSA, which

is a new type of sequential decoding, we expect this behavior.

Before obtaining experimental results that typically represent

the MSA performance, various simulations were performed to select

adequate decoding parameters, especially those which influence the

error rate. We found that although PE decreases with increasing ZI,
and also decreases with increasing Clim , Z and Clim play completely

different roles in the MSA decoding. ZI, the first stack size, should

be made large enough to approximate SSA decoding for most blocks so

that few blocks would necessitate secondary stack operations. For

those very noisy blocks, Cli m is made at least equal to Ccrit above

which erasurefree decoding is achieved. Therefore, Cllm allows at

least one tentative decision during secondary stack processing before

the machine halts because of saturation. We found that this aspect of

the MSA improves the error performance(by about 20%, on the average

during all trials for practical error rates), in comparison with a

random-guess upon SSA saturation.

We found that it was not feasible to improve performance by

linearly increasing Clim any further. We believe that for larger
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computational limits, the MSA will try to return to previous stacks

to improve the first tentative decision. Under very noisy conditions

which require secondary stacks, the correct path has such a low metric

that it is buried deeply in one of the stacks. The return-to-stack

operation would only tend to form more stacks without making any

real contribution toward locating the correct path in the tree.

Finally, the MSA reaches the larger Cli m and usually outputs the

first tentative decision. We tested this hypothesis and found that

for the (2,1)8 MSA, a value of 1700 for Cli m produced the same results

as did a value of 5120, and that for the (2,1)15 MSA, a value of

3600 for Cli m gave the same results as a value of 8192. Consequently,

we selected the lower Clim value to achieve erasurefree decoding.

The results of the simulation for the stated parameter values

are given in Tables VI through X. Curves of decoded error rate are

plotted in Figure 10 in comparison with the performance of the (2,1)8

Viterbi algorithm decoder under the same channel noise environment.

We concluded that the (2,1)8 Viterbi algorithm performs worse than

the (2,1)15 MSA, but it clearly outperforms the (2,1)8 MSA in terms

of error rate. The increase of constraint length from 8 to 15 adds

modest complexity to the MSA. Both the (2,1)8 and the (2,1)15 MSA

provide erasureless decoding as does the Viterbi algorithm. The

MSA has additional flexibilities available. The user can adjust the

parameters to a certain extent to fit the computational assets while

achieving acceptable decoder error performance, and the error per-

formance becomes asymptotically optimum if enough decoding memory is

provided. Further consideration will be given to storage and through-

put in the following paragraphs.

6.3 Storage Needed for the NSA

The storage requirements of the MSA relate directly to the
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TABLE VI

Error Rate and Throughput Performance of the (2,1)8 MSA

Performance
arameters Decoded Error Rate Throughput (BPS)

(Eb/No) dB

4.609 2.184 x 10- 3  160

4.812 1.155 x 10- 3  266

5.032 6.45 x 10- 4  379

5.272 3.79 x 10- 4  505

5.529 1.92 x 10- 4  630

5.823 9 x 10- 5  750

6.129 3 x 10- 5  950

6.298 1.3 x 10- 5  1050

6.465 6 x 10- 6  1126

6.669 2.8 x 10 - 6  1150
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TABLE VII

Error Rate and Throughput Performance of the (2,1)15 MSA

Performance

Parameters
reters Decoded Error Rate Throughput (BPS)

(Eb/No)dB

4.609 8.16 x 10 - 4  63

4.812 4.48 x 10- 4  108

5.032 3.34 x 10- 4  158

5.272 2.12 x 10- 4  233

5.529 9.1 x 10 - 5  330

5.823 2.2 x 10- 5  530

6.129 3.5 x 10- 6  770

6.298 1.2 x 10 - 6 900

6.465 4 x 10- 7  980

6.669 1.8 x 10- 17 000
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TABLE VIII

Error Rate and Throughput Performance of the

(2,1)8 Viterbi Algorithm

Performance

arameters Decoded Error Rate Throughput (BPS)

(Eb/No)dB

4.609 1.4 x 10 - 3  50

4.812 7.72 x 10 - 4  50

5.032 5 x 10- 4  50

5.272 2.3 x 10 - 4  50

5.529 1.3 x 10- 4  50

5.823 5 x 10- 5  50

6.129 1.4 x 10-5  50

6.298 6 x 10 - 6 50

6.465 2.3 x 10- 6 50

6.669 1.1 x 10 - 6  50
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TABLE IX

Performance Comparison Under Quiet (p - 0.029) Situation

thms (2,1)8 MSA (2,1)8 VA (2,1)15 MSA

Parameters

Decoded 45Error Rate 1.92 x 10 4  1.3 x 10 4  9.1 x 10

Throughput 630 BPS 50 BPS 330 BPS

Storage 18 kBytes 2 kBytes 44 kBytes

TABLE X

Performance Comparison Under Noisy (p = 0.045) Situation

lgrthms

Performanc (2,1)8 MSA (2,1)8 VA (2,1)15 NSA
Parameters

Decoded - 3

Error Rate 2.18 x 10 1.4 x 10 8.16 x 10

Throughput 160 BPS 50 BPS 63 BPS

Storage 18 kBytes 2 kBytes 45 kBytes
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implementation cost of the decoder. These requirements increase

linearly with the constraint length while those of the Viterbi

algorithm increase exponentially as shown in Figure 11. As we

mentioned before, MSA memory is traded off for tolerable error

performance and erasurefree decoding. We found, for example, that

the available Z-80 memory (44k bytes) obtained nearly optimum

performance for the (2,1)8 code. Additional memory could be used to

slight advantage. For the (2,1)15 code, however, the Z-80 memory

proved inadequate; the longer code required additional memory which

was conveniently obtained by borrowing from a collocated NOVA

minicomputer.

There are 15 bytes for each stack entry. For the (2,1)8 MSA

with C l m = 1700, approximately 25k bytes of memory are required for

processing. For the (2,1)15 MSA, the memory requirement for Clim =

3600 is 54k bytes which is quite achievable on a special purpose

micro-computer system (although not available on our Z-80 which had

44k bytes available for processing after accommodating program storage).

The goal of using low-cost microprocessors to implement high-performance

erasureless sequential decoding seems quite attainable.

It is also helpful to talk about storage in terms of stacks. The

number of stacks required for each frame (or block) is dependent upon

the size of the first stack, the size of the higher-order stacks, and

the computational limit. The larger the first stack is made, the less

probable it is that the decoder will create secondary stacks. Thus,

it is more likely that the MSA will behave like the SSA. If the

higher-order stacks are made larger while fixing other parameters, the

required number of stacks will be relatively smaller. However, more

computations will be needed due to the increasing size of the secondary
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stacks. The increase of computational limit will cause more stacks

to be formed before the decoder terminates, which means large storage

is required. For our goal of low cost and modest memory requirements,

the first stack size is large while the higher-order stack size and

computational limit are small (yet comp-itational limit must exceed

Ccrit to achieve erasurefree decoding). For our selected parameters,

the probability P(u>v) (that the number of stacks u needed to reach

the first tentative decision exceeds some number v) is an exponentially

decreasing function of v, as can be seen in Figure 12 and 13. Most

of the blocks are processed with a relatively small amount of storage.

Also note that the probability of SSA operation is much higher (99,95%

of the time for (2,1)8 and 99.99% of the time for (2,1)15) than is

the probability of forming higher-order stacks because Z1 is large.

The MSA will form a number of higher-order stacks when p is large

(p = 0.045, for example) since Z1 is too small to approximate the

SSA decoder. Once a second stack is formed, it is likely to also form

other higher-order stacks. The reason is simply that the MSA is

processing some badly corrupted sequences and the size of higher-order

stacks is too small (Zi = 11) to carry out the decoding without

creating additional stacks. Zi cannot be made large because in that

case although less stacks will be required, computation effort will

be too large to handle. It is fair to say that we would rather stay

at the first stack all the time to finish decoding, but if the noise

is severe enough to use secondary stacks, a large number of higher-

order stacks should be available to process these worst-case sequences.

Therefore, we have made available a number of secondary stacks in

the range 0 ! u ! 256.

We conclude this discussion on storage requirements with a

comparison between the storage required for the MSA and that of the

Viterbi algorithm. The storage required for the MSA at p - 0.029 is
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about 20k bytes for the (2,1)8 code (there are 1354 entries each with

a 15 byte array) and about 54k for the (2,1)15 code (there are 3153

entries each with a 15 byte array). For the (2,1)8 Viterbi algorithm,

only 2k bytes are needed for storage in the Z-80 but the requirement

would increase to 368k bytes if the (2,1)15 decoder were to be imple-

mented. That is the main reason why the Viterbi algorithm is con-

strained to relatively short codes while the MSA can accommodate

longer codes.

6.4 Computations and Throughput of the MSA

There are two measures of decoding speed which are closely

related to each other; one is the number of computations or node

extensions; the other is the actual throughput. The latter has

more significance when we are comparing different decoding algorithms.

The time consumed by the decoder is approximately proportional

to the number of decoder computations that are performed, where a

single decoder computation of the MSA comprises all the operations

performed for each node extension (including metric calculations,

ordering and possibly stack transfer/deletion). For the stack

algorithm the average number of decoder computations per decoder

info -ition bit is bounded by a constant for all rates less than

R comp. The Rcomp is a function of the channel transition probabilities

only, and exceeds one-half the channel capacity for all nonpathological

memoryless channels. The average number of computations increases

exponentially with k if R>R comp. Therefore, for large k, one would

ordinarily not attempt to use a stack algorithm at rates that

exceed R comp; i.e., for BSC crossover probability p > 0.045. It

was stated previously in Section II that even the SSA shows a

significant speed advantage over the Fano algorithm for the BSC.

But the computational distribution is Pareto for the SSA.
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Below R , the search increases only linearly and it is

intuitively satisfying to see that as long as the decoding work has

the same character as that undertaken by the maximum likelihood

decoder, the error results are the same. At rates below R comp, the

error performance is close to optimal, whereas the decoding effort

increase is only linear with k. As the channel rate R approaches close

to R from below, the computational load increases tremendously.comp -1

For R < Rcomp , P(C>Cv) - ACv  where A is a constant of proportionality;

but the average decoding computational effort becomes infinite when

R = R comp. While this does not necessarily happen in practice (the

theoretical result is only a bound), the dramatic increase, even as

R exceeds about 0.9 R , has certainly been observed. For the MSA,c omp

p (C > C v ) is an exponentially distributed function of Cv (Property 5

of Section V) as shown in Figures 14-16. The number of computations

on the average is very small and for C considerably less than Ccrit,v

p (C > Clim) can be made small also. This also means the computations

needed to reach the first tentative decision are almost always less

than Clim and erasurefree decoding is achieved.

The number of computations for the MSA is a random variable; we

found the average is 1.37 computations per information bit for the

(2,1)8 code and 1.41 for the (2,1)15 code. The number of computa-

tions of the Viterbi algorithm is a constant decoding effort of 128

computations per information bit for the (2,1)8 code. Although the

average number of computations of the MSA is much less than that of

the Viterbi algorithm (by two orders of magnitude), the operations

needed to be performed for each computation (stack order/deletion/

creation) are more complicated and consume more computer time than

those of the simple add/compare/select operation of the Viterbi

algorithm. With the software implementation of the MSA, erasurefree

decoding is also obtained at the expense of some computer time (com-

putational limit needs to be set sufficiently large). The stack
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dreation/ordering/deletion operation is about 10 times slower than

the add/compare/select operation.

We see a close relationship between computational limit Clim and

the number of stacks u. C lim is actually the number of entries

which must be put in u stacks. Since the first stack size is Z and

each secondary stack size is Zi, the number of stacks required is

therefore:

C in + 1 (22)
Clim- Z1

where Z accounts for the number of secondary stacks

and the added 1 accounts for the first stack.

If we fix the computational limit, Clim (Clim = 1700), the

first stack size, Z1 (Z1 = 1024) and the secondary stack size, Zi

(Zi = 11), the maximum number of stacks required is determined to be

63.

The second measure which gives the actual decoding speed is the

throughput of the decoder. It counts, in terms of bits/second, the

speed of the MSA operation while excluding the processing time

of the other peripheral devices (encoder, noise generators, etc.).

The throughput is a more realistic measure than the number of

computations and reflects the actual speed advantage of the MSA

over the Viterbi algorithm. The throughput of the (2, 1)8

MSA under moderate noise environment (p = 0.029) is 500 bits/second,

as compared to 50 bits/second for the (2,1)8 Viterti algorithm.

Therefore, the MSA is actually about ten times faster than the

Viterbi algorithm to achieve comparable error performance. A compari-

son of throughput is shown in Figure 17 and Table IX and X. Notice

that MSA shows a varying throughput while the Viterbi algorithm gives

constant throughput for various noisy conditions. These results

further demonstrate the variable nature of the computational effort of

the MSA. 78
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SECTION VII

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

In this report, we have examined a software implementation of

the Multiple Stack Sequential Decoding Algorithm (NSA) on the Z-80

microcomputer system and have discussed the resulting performance

subject to certain rules of parameter selection. Techniques have

been described for maintaining a tolerable undetected error probability

as the SNR decreases. The utilization of the NSA has eliminated the

erasure problem caused by incomplete decoding in other sequential de-

coding procedures.. The major limiting property of the Single Stack

Algorithm (SSA), Pareto computational distribution, has been removed by

processing multiple stacks arranged in parallel; the computational dis-

tribution is now an exponentially decreasing function of some number CV"

The feasibility of implementing both the Viterbi algorithm and the MSA

on the Z-80 system has also been verified. In this section, we will

draw some conclusions and make suggestions based on the following:

I. performance comparison of NSA and Viterbi algorithm with

respect to:

a. decoded error rate,

b. decoding effort,

c. storage requirement,

2. soft quantization possibilities for NSA,

3. real-time (2,1)8 NSA decoder possibilities and feasibility

requirements,

4. performance of the NSA on a burst noise model,

5. suggested further research areas.
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7.1 Performance Comparisons of the MSA and Viterbi Algorithm

The performances of the MSA and the Viterbi algorithm have been

compared in respect to the decoded error rate, the decoding effort

(or throughput rate) and the storage requirements. We have concluded

that the decoded error rate of the (2,1)8 MSA is slightly worse (less than

0,5dB) than that of the (2,1)8 Viterbi algorithm, but the throughput rate

is ten times faster when implemented on the Z-80. If the user can tolerate

some degradation of error performance to gain more speed, the (2,1)8

MSA, with a storage requirement ten times larger than that of Viterbi

algorithm, is certainly an effective alternative. The (2,1)15 MSA

performs better than the (2,1)8 Viterbi algorithm with respect to

decoded errors, while the average throughput rate is still somewhat

faster. However, the storage requirement is about twenty times

larger. But, considering the declining cost of microcomputer memory,

the (2,1)15 MSA may constitute the most effective alternative to a

(2,1)15 Viterbi algorithm if a complete decoding method, which

achieves low error probabilities at acceptable speeds, is desired.

7.2 Soft Quantization Possibilities for MSA

For the Viterbi algorithm, soft quantization is easy to implement

and is a good practice. The 2 dB gain is usually obtained by processing

the soft quantized data at the input section, and then is incorporated

in the branch and path metrics without requiring additional storage.

The MSA, on the other hand, must store several thousand branches of

data according to the size of the stack; each would contain log2

Q-bits for rate R and Q-level quantization. The complicatedR c
c

operations of the decoder, such as stack creation, stack transfer,

and stack Jeletion, make the task of soft quantization even more

unpredictable. The 2 dB improvement promised by theory might not be

worth the added complexity.
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7.3 Real-Time (2,1)8 MSA Feasibility Requirements

The MSA was tested using mainly software implementations with a

simulated channel model. If a special-purpose hardware decoder and

peripheral devices were used, the data rate could have been high

enough for real-time consideration ane on-line processing low data-

rate applications where special-purpose Viterbi decoders are currently

being used. As for the software Z-80 MSA decoder, only quite low data

rate was possible because of the speed limit of the Z-80 (in tle range

of a few hundred bits per second). The software Viterbi algorithm

achieves data rates of only a few tens of bits per second on the

same machine. The combination of the MSA and next-generation

processors may prove to be more rewarding.

Judging from the decoding operations of the MSA, it would be

more timesaving for the microcomputer system to have the following

instructions.

(1) Compare

(2) Decrement and jump (an instruction that decrements an index

register and jumps if the register content is non-zero).

The presence of more than one accumulator would reduce the decoding

time even more. The choice of the Z-80 type of system is justified

in this aspect. A few other features that would be helpful to

achieve real-time decoding are:

(1) all computer time devoted to MSA decoding,

(2) maximum computations, Clim, varied according to allowable

processing time,
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(3) adjustable delay for information delivery (i.e., variable

buffer),

(4) faster instruction cycle time with a large speed advantage

to keep up with incoming data,

(5) different machines operating under a central control,

each performing a single operation such as stack ordering,

stack deletion, or stack transfer, or

(6) different machines operating independenzly, each performing

several operations and each exploring different paths in the

code tree.

A 16-bit microcomputer is suitable for feature 4. The bit-slice

bipolar microcomputer is appropriate for features 5 or 6.

Because it is the message that cannot be decoded that limits

the real-time decoder performance, it is also this message which

must be considered when speed and memory requirements are determined

for the MSA. All codewords could be successfully and completely

decoded given enough memory and processing time for rates less than

channel capacity. Even with a somewhat constrained computational

limit, the MSA is able to obtain some decision which is better than

the random-guess version of the finite-stack SSA.

7.4 Performance of the MSA on Burst Noise Model

It was expected that sequential decoding would be unsuitable

as a burst-correcting technique. The variability of the decoding

computation time prohibits its successful utilization as a burst

decoder. A burst model was implemented to further verify that this

consideration applies also to the NSA. The error rate and throughput

performance showed that the MSA cannot handle bursts at all and

interleaving and de-interleaving techniques as are required with the

Viterbi algorithm must be applied to obtain tolerable performance.
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7.5 Suggestions for Further Study

Further study in the use of the multiple stack algorithm as a

low-cost, efficient sequential decoding method should include the

design of a real-time MSA decoder at useful data rates. It should

also consider the implementation of the MSA on either a faster 16-bit

NMOS microprocessor (the Z-8000, for instance) or on a bit-slice

bipolar microprocessor suitable for parallel processing.
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